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Abstract  23 

Forest landscape simulation models (FLSMs) – often used to understand and project forest 24 

dynamics over space and time in response to environmental disturbance – have rarely included 25 

realistic epidemiological processes of plant disease transmission and impacts. Landscape 26 

epidemiological models, by contrast, frequently treat forest ecosystems as static or make simple 27 

assumptions regarding ecosystem change following disease. Here we present the Base 28 

Epidemiological Disturbance Agent (EDA) extension that allows users of the LANDIS-II FLSM 29 

to simulate forest pathogen spread and host mortality within a spatially explicit forest simulation. 30 

EDA enables users to investigate forest pathogen spread and impacts over large landscapes (>105 31 

ha) and long time periods. We evaluate the model extension using Phytophthora ramorum as a 32 

case study of an invasive plant pathogen causing emerging infectious disease and considerable 33 

tree mortality in California. EDA will advance the utility of LANDIS-II and forest disease 34 

modeling in general. 35 

 36 
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1. Introduction 47 

Epidemiological disturbances, such as emerging pathogens and infectious disease 48 

outbreaks, are important agents of forest change around the world, causing tree mortality at 49 

scales ranging from individual trees of a single species to entire forest patches (Meentemeyer et 50 

al., 2008; Welsh et al., 2009). Beyond the complete loss of certain tree species, forest pathogens 51 

can significantly alter the functioning of forested ecosystems and the services they provide 52 

(Liebhold et al. 1995, Simberloff 2000, Vitousek et al. 1997). For example, pathogens can reduce 53 

the capacity of forests to sequester carbon, and can strongly interact with other types of 54 

disturbance such as fire, insects, and drought (Anderson et al. 2004, Dale et al. 2009, Dwyer et 55 

al. 2004, Jactel et al. 2012, Vitousek et al. 1997). Developing a better understanding of how 56 

forest pathogens interact with other disturbances and changing environmental conditions to alter 57 

forest ecosystem dynamics is crucial for land managers, decision makers, and any stakeholder 58 

with multiple local interests involved (Cobb and Metz 2017, Rizzo et al. 2005). 59 

Forest landscape simulation models (FLSMs) have been developed to specifically address 60 

management and research questions at landscape scales (>105 ha) by projecting forest dynamics 61 

over space and time (Mladenoff 2004, Scheller and Mladenoff 2007). These models typically 62 

include details such as tree age, species and biomass, and are widely used to analyze the 63 

influence of disturbances over time as they affect large-scale forest ecosystem dynamics 64 

(Thompson et al. 2016). One of several FLSMs, LANDIS-II stands out as a process-based forest 65 

landscape model that can include variable time steps for different ecological processes (e.g. 66 

succession, disturbance, seed dispersal, forest management, carbon dynamics) and simulate their 67 

interactions as an emergent property of the independently simulated processed (Mladenoff 2004, 68 

2005, Scheller et al. 2007). LANDIS-II continues to grow its user community and several 69 
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extensions are available to simulate disturbances like wind, fire, insects, harvesting, or land-use 70 

change. To date, the representation of forest pathogen and disease spread in FLSMs including 71 

LANDIS-II has been lacking.  72 

Landscape epidemiological models frequently treat forest composition and host density 73 

as static (Meentemeyer et al. 2012), meaning that the species do not age or experience effects of 74 

disturbance. This makes it difficult to understand how disease alters competitive interactions 75 

among species, a process known as apparent competition, which can alter species composition at 76 

a landscape level (Cobb et al. 2010). This lack of realistic changes in host community 77 

composition greatly impedes modeling the interactions of other landscape-level disturbances 78 

with disease spread (Cobb and Metz 2017). 79 

In this paper, we fill this gap by introducing the Base Epidemiological Disturbance Agent 80 

(EDA) extension for LANDIS-II, which simulates forest pathogen spread and mortality in 81 

forested landscapes. The new extension is compatible with all LANDIS-II succession extensions 82 

and can be used in conjunction with other disturbance extensions (e.g., fire, insect, wind) to 83 

simulate their combined effects on forest landscape dynamics. In this paper, we provide an 84 

overview of the modeling framework behind Base EDA and an example application of the 85 

extension to simulate the expansion of the pathogen (Phytophthora ramorum) that causes 86 

“sudden oak death” within the Big Sur area of California (USA).  87 

 88 

2. Model description 89 

LANDIS-II is a raster-based modeling framework consisting of a model core that links, 90 

parses, and validates data from multiple extensions (modules) and allows the user to “plug in” a 91 

forest succession extension and any number of optional disturbance extensions (Scheller et. al. 92 
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2007). EDA is a disturbance extension compatible with all LANDIS-II succession extensions. It 93 

is open source and freely available at the LANDIS-II website2. The download comes with an 94 

installer, user guide and sample data.  95 

Base EDA requires the user to supply a raster map with location(s) of initial infection. 96 

The user must also supply agent-specific parameters such as host transmissivity, host 97 

susceptibility, climate tolerances and preferences, mean transmission rate, acquisition rate, 98 

maximum dispersal distance, and choose the appropriate dispersal kernel and exponent (see 99 

Sections 2.1-2.3 below). The user also provides parameters defining how other disturbances 100 

modify likelihood of infection.  We demonstrate Base EDA with a case study of Phytophthora 101 

ramorum, the pathogen which causes sudden oak death, a major forest disease in California 102 

(Meentemeyer et al. 2008, 2012, Metz et. al. 2017). For sudden oak death, fire kills the pathogen 103 

and slows reinfection for several years following fire (Beh et al. 2012). 104 

Base EDA is specifically designed to simulate asymmetric weather-driven transmission 105 

of pathogen infection within a multi-host landscape. Transmission is modeled as a dynamic 106 

process affecting a meta-population comprised of N contiguous subpopulations represented by 107 

cells (sites) arranged on a grid. Cells contain forest tree species age cohorts, and (optionally) 108 

nonforest vegetation types. Tree mortality simulated by EDA is passed to the succession model 109 

that in turn handles vegetation response to that mortality (e.g., changes in light, water, and/or 110 

nutrients, depending on the succession extension used). Epidemiological disturbances within the 111 

EDA are probabilistic at the site level, where each site is assigned a probability of being in one 112 

of the following states: Susceptible (S), Infected (infectious non-symptomatic) (I), Diseased 113 

(infectious and symptomatic) (D). Probabilities are compared with a uniform random number to 114 

                                                           
2 www.landis-ii.org 

http://www.landis-ii.org/
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determine whether the site becomes infected or, if already infected, to become diseased. Disease 115 

causes species- and cohort-specific mortality in the cell. The epidemiological model is similar to 116 

that in Meentemeyer et al. (2011) with adjustments made to fit the LANDIS-II framework and 117 

account for mortality. Additionally, the model can handle more than one EDA agent (pathogen), 118 

and is most compatible with aerial dispersal. 119 

 120 

2.1 Site Host Index 121 

Site host index (SHI) was adapted from the “site resource dominance” concept in the 122 

LANDIS-II Biological Disturbance Agent Extension (Sturtevant et al. 2004). SHI accounts for 123 

the spatial distribution of known hosts of the EDA agent and is a combined function of tree 124 

species composition and the age cohorts present on that site. This approach allows the 125 

quantification of susceptibility for each non-infected cell to become infected, and the suitability 126 

of each infected cell to produce infectious spores. The relative host index value of a given 127 

species cohort is defined by its host competency class, where low, medium, and high 128 

competency classes are user-defined using values ranging between 1 and 10, with non-hosts 129 

having a value of 0. The EDA extension compares a look-up table with the species cohort list at 130 

each cell generated by LANDIS-II to calculate SHI at time t using one of two methods: 1) the 131 

host value from the maximum host competency class present, or 2) an average host value of all 132 

tree species present, where the host value of each species is represented by the one assigned to 133 

the oldest cohort. Species identified as “ignored” do not contribute to the calculation of average 134 

resource value, while non-host species that are not ignored contribute a value of 0. Non-135 

sporulating hosts (i.e. hosts that do not contribute to pathogen or disease transmission) should not 136 

be included in the host index calculation. 137 
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 138 

2.1.1 Site host index modifiers 139 

Site host index modifiers (SHIMs) are optional parameters used to adjust SHI to reflect 140 

variation introduced by both site environment (i.e., land type) and recent disturbances (Sturtevant 141 

et al. 2004). Land type modifiers (LTMs) and disturbance modifiers (DMs) can range between -142 

10 and +10, and are added to the SHI value of all affected sites where host species are present 143 

(SHI > 0). LTMs are assumed to be constant for the entire simulation, while DMs have a defined 144 

duration and decline linearly with the time since last disturbance (𝑡𝐷𝑆𝑇) as follows: 145 

𝐷𝑀𝐷𝑆𝑇(𝑡) = 𝐷𝑀𝑚𝑎𝑥,𝐷𝑆𝑇 ∗
𝐷𝑀𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛,𝐷𝑆𝑇 − 𝑡𝐷𝑆𝑇

𝐷𝑀𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛,𝐷𝑆𝑇
 146 

Disturbances that may affect a given EDA agent include fire, wind, other EDA agents and 147 

insects, as well as timber harvest. SHI is then modified by LTM and the sum of all DMs: 148 

𝑆𝐻𝐼𝑀(𝑡) = 𝑆𝐻𝐼(𝑡) + 𝐿𝑇𝑀 + (𝐷𝑀𝑤𝑖𝑛𝑑(𝑡) +  𝐷𝑀𝑓𝑖𝑟𝑒(𝑡) + ⋯ ) 149 

The user should calibrate the two modifiers to reflect the relative influence of species 150 

composition/age structure, the abiotic environment, and recent disturbance on SHI. SHIM is 151 

normalized by its mean over the entire study area, 𝑆𝐻𝐼𝑀(𝑡) =  
𝑆𝐻𝐼𝑀(𝑡)

𝑆𝐻𝐼𝑀𝑚𝑒𝑎𝑛
, and modifies the 152 

disease transmission rate, β (see Section 2.2). Normalization of SHI allows comparison of β 153 

against homogeneous landscape conditions (where SHIM = 1) and to interpret β as the rate of 154 

secondary infection of cells by a single infected neighboring cell in an otherwise uninfected 155 

landscape. 156 

 157 

2.2 Weather 158 
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An annual weather index, 𝑤(𝑡), is used to account for the effect of weather conditions on 159 

the probability of uninfected hosts becoming infected, and infected hosts spreading an individual 160 

EDA agent. Weather predictors (or transformations thereof) should be selected based on their 161 

relevance to the chosen EDA agent. The weather index is multiplied by a baseline transmission 162 

rate, 𝛽0, to produce a time-dependent transmission rate, 𝛽(𝑡) = 𝑤(𝑡)𝛽0, where 𝛽0 is defined by 163 

the user. The basic weather index for year t, 𝑊(𝑡), comprises the cumulative effect of N weather 164 

predictors (e.g. rainfall alone, or rainfall and temperature) over a range of months, specified by 165 

the user (e.g. April to June), and is calculated as follows: 166 

𝑊(𝑡) = ∑ 𝑋1 ∗𝑑∈[𝑚𝑜𝑛𝑡ℎ𝐴(𝑡),…,𝑚𝑜𝑛𝑡ℎ𝐵(𝑡)] 𝑋2 ∗ … ∗ 𝑋𝑁     (1) 167 

where 𝑋1 ∗  𝑋2 ∗ … ∗ 𝑋𝑁 represent the weather predictors and the cumulative sum runs over days 168 

d included between two user-defined months (𝑚𝑜𝑛𝑡ℎ𝐴 and 𝑚𝑜𝑛𝑡ℎ𝐵) for the current year t. If 169 

necessary, weather predictors in (1) can be replaced by derived (e.g., aggregated, or transformed) 170 

versions. As an example, a predictor can be aggregated (summed or averaged) over N 171 

consecutive days of a week or month (e.g., cumulative precipitation). Transformed predictors are 172 

expressed by a function, (𝑋). In the current version of the extension (v1.0), only a polynomial 173 

transformation is available for the user, defined as: 174 

𝑓(𝑋) = 𝐴 + 𝐵 + 𝑒𝑥𝑝 (𝐶 ∗ [ln (
𝑋

𝐷
) 𝐸⁄ ]

𝐹

) 175 

where A, B, C, D, E, F are constants specified by the user to adjust the shape of the polynomial 176 

(e.g., improving polynomial fit to empirical data on response of EDA agent to changes in 177 

temperature). As an example, such a transformation can reflect changes in rate of pathogen 178 

sporulation at increasing temperature values. The actual weather index, 𝑤(𝑡), is normalized by 179 

the mean 𝑊𝑚𝑒𝑎𝑛 over the available time series of historical weather predictors: 𝑤(𝑡) =180 

 𝑊(𝑡) 𝑊𝑚𝑒𝑎𝑛⁄ . Normalization means that 𝛽0 can be interpreted as the annual transmission rate 181 
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under average (or under constant) weather conditions. The weather index built this way varies 182 

annually, but is spatially-uniform within each ecoregion. 183 

 184 

2.3 Epidemiological Processes 185 

The epidemiological model shares features with spatially-structured metapopulation 186 

models and relies on a few important assumptions: First, only the presence/absence of infection 187 

in each cell is accounted for. This simplification ignores a transient effect (occurrence, spread 188 

and intensification) within the same cell, assuming that an effective level of inoculum is reached 189 

rapidly (but still below the maximum sporulating capacity of the cell). Improving this 190 

approximation would require a much larger computational effort in the parameter estimation 191 

procedure described in Filipe et al. (2012). Second, infected cells immediately become 192 

infectious, which is particularly true for an EDA with a small latent period across its host range. 193 

Third, infected sites remain infectious for an undetermined (i.e., long) period; in epidemiological 194 

terms the infectious period is considered indefinite and is left out of the model. The practical 195 

implication is that no cell can recover from infection throughout the simulation, for example by a 196 

within-host process such as a host defensive response. However, conversion from infected to 197 

uninfected status of a cell can occur due to 1) mortality of susceptible species by disease or other 198 

disturbances and/or 2) successional processes that result in a community with no hosts. 199 

At every time step t, a susceptible cell (site) i can become cryptically infected subject to a 200 

force of infection Λ𝑖(𝑡) and, once infected, it can become diseased at rate 𝑟𝐷. Despite potentially 201 

containing dead hosts, symptomatically infected (diseased) cells have the same transmission rate, 202 

i.e., are as infectious as cryptically infected cells. The probabilities that cell i is in each of the 203 

possible states (Susceptible, Infected, Diseased), Pi,S, Pi,I, and Pi,D, respectively, are governed by 204 
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a system of differential equations: 205 

Δ𝑃𝑖,𝑆

Δt
= −Λ𝑖(𝑡)𝑃𝑖,𝑆 206 

Δ𝑃𝑖,𝐼

Δt
= Λ𝑖(𝑡)𝑃𝑖,𝑆 − 𝑟𝐷𝑃𝑖,𝐼 207 

Δ𝑃𝑖,𝐷

Δt
= r𝐷𝑃𝑖,𝐼 208 

The initial conditions for each cell, at the estimated time of onset of the outbreak, are Pi,S = 1, Pi,I 209 

= 0, Pi,D = 0, except at the cell estimated to be the location of the first infection, where Pi,S = 0, 210 

Pi,I = 1, Pi,D = 0. The force of infection, Λ𝑖(𝑡), is given by: 211 

Λ𝑖(𝑡) =  𝛽(𝑡) ∑ 𝑆𝐻𝐼𝑀𝑗(𝑡) ∗  𝑆𝐻𝐼𝑀𝑖(𝑡) ∗  𝑃𝑗,𝐼+𝐷|𝑖,𝑆 ∗ 𝐾(𝑑𝑖𝑗)𝑗≠𝑖                       (2) 212 

where 𝛽(𝑡) = 𝑤(𝑡)𝛽0 is the transmission rate, with 𝑤(𝑡) the annual index of weather fluctuation 213 

about a N-year average (see Section 2.2) and 𝛽0 the baseline rate; 𝐾(𝑑𝑖𝑗) is a dispersal kernel 214 

(see Section 2.3.1) for a given distance d between target and source cells; 𝑃𝑗,𝐼+𝐷|𝑖,𝑆 is the 215 

conditional probability that source cell j is infectious (either cryptic or symptomatic infection) 216 

given that target cell i is susceptible. To achieve a first order of approximation, we assume that 217 

𝑃𝑗,𝐼+𝐷|𝑖,𝑆 ≈  𝑃𝑗,𝐼 +  𝑃𝑗,𝐷 which we expect to be a reasonable approximation to the infection 218 

pattern, especially when dispersal is not too localized (e.g. within short distance from source of 219 

infection). 220 

 221 

2.3.1 Dispersal kernel 222 

The dispersal kernel used in Base EDA is derived from, and shares code with, the seed 223 

dispersal kernel developed by Lichti and colleagues (N. Lichti, Purdue University, unpublished 224 

manuscript). This dispersal function and associated distributions are especially suitable for 225 

aerially dispersed EDA agents that include a broad range of fungi and mistletoes. The probability 226 
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that the agent disperses a distance d from the source was expressed by two main functional 227 

forms, often used in the literature: a power-law and a negative exponential. Their generic form 228 

can be defined as follows: 229 

𝐾𝑃𝑜𝑤𝑒𝑟𝐿𝑎𝑤(𝑑) = 𝑑−𝛼 230 

𝐾𝑁𝑒𝑔𝐸𝑥𝑝(𝑑) = 𝑒−𝑑/𝛼 231 

An EDA agent produced in a source cell can only be deposited in a cell different from the 232 

source, i.e., transmission in force of infection (Λ, see Section 2.3 above) is conditional on the 233 

agent being dispersed outside the source cell. The rationale for this choice is that infection 234 

processes within a cell are not tracked (no transient effect). In addition, the kernel must integrate 235 

to 1 within a chosen 2D spatial neighborhood window (excluding the source cell). The 2D 236 

window accounts for all possible pathways through which the target cell can become infected by 237 

a given source cell. A user-defined maximum radial distance is used to limit EDA agent dispersal 238 

within a chosen neighborhood size. For cases where only local, short-distance dispersal events 239 

are considered, this parameter becomes essential to reduce computational burden. Only isotropic 240 

dispersal (no wind-assisted directional spread) was considered for version 1.0 of the Base EDA 241 

extension. 242 

 243 

2.3.2 Tree species cohort mortality 244 

Within each diseased cell, the mortality of individual tree species age cohorts is a 245 

probabilistic function of the mortality probability of the cohort’s vulnerability class. The user 246 

defines which species and ages fall into each vulnerability class (low-high), and the probability 247 

of cohort mortality for each class. Probabilities are compared with a uniform random number to 248 

determine whether an entire age-cohort dies (i.e. is removed) or not, where tree species cohort 249 
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mortality is then passed to the succession extension which handles the removal of the cohort(s) 250 

and updates the cohort list. We acknowledge that complete cohort removal rather than a partial 251 

one may be a simplistic assumption in the current version of the model, but for many landscape-252 

level processes or dynamics it should not cause significant changes in outcome. The Base EDA 253 

time step concludes updating the time since last disturbance, updating the time since last 254 

disturbance, outputting maps of cell states (1 = Susceptible, 2 = Infected, 3 = Diseased) and 255 

cohort mortality, and by updating the Base EDA log file (Fig. 1). 256 

 257 
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 258 

Figure 1: Flow diagram illustrating the main logical structure of the LANDIS-II Base 259 

Epidemiological Disturbance Agent (EDA) extension. 260 

 261 

3. Case study 262 

To demonstrate the capabilities of the Base EDA extension, we modeled 23 years of 263 

Phytophthora ramorum spread within an 8,017 km2 area of central California, USA (Fig. 2).  P. 264 

ramorum infects multiple hosts with some tree and shrub species experiencing non-lethal foliar 265 
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symptoms known as ramorum blight, and oaks and tanoaks experiencing lethal stem cankers that 266 

lead to the disease sudden oak death. The simulations were initiated with the best-known 267 

locations of initial infection in the study area in 1990 and simulated through 2013 (the last year 268 

for which plot level infection data are available) (Gaydos et. al. 2017, Metz et. al. 2017). We 269 

used LANDIS-II NECN Succession 1.0 (Scheller et al. 2011) to simulate forest growth and 270 

succession and the LANDIS-II Base EDA 1.0 extension to simulate spread of P. ramorum and 271 

mortality caused by SOD. Parameter values chosen for the EDA agent in this simulation are 272 

reported in Supplementary material Appendix 1, Table A1-A2. The simulations used a 30-m cell 273 

size. Base EDA used 1-year time steps and NECN used 10-year time steps. We compared the 274 

simulated disease spread in 2006, 2007, 2009, 2010, 2011, and 2013 with the subset of plots that 275 

were sampled in that year (i.e. plots sampled in 2006 were compared to model results in 2006 276 

etc.) (Fig. 2) (Meentemeyer et. al. 2008, Metz et. al. 2017). We achieved a simulation accuracy 277 

of approximately 73.05% and 58.33% for infected and uninfected plots, respectively, for an odds 278 

ratio of 3.79 (Table 1). Calibration would allow for this to be further improved. Currently, the 279 

model is not predicting negative values as well as it does for positive values. Further calibration 280 

should improve this behavior. Moreover, it is partially due to the fact that the host data being 281 

used for the model are only 80% accurate at the landscape level. 282 

The results also replicate the patchy nature of P. ramorum infection observed in the field 283 

(Meentemeyer et. al. 2008, Metz et. al. 2017). This example illustrates the utility of being able to 284 

simulate disease spread and mortality with an existing FLSM to understand not only the spread 285 

of the disease, but also its potential impacts to the ecosystem through mortality of host trees.  286 
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 287 



16 
 

Figure 2: 2013 most recent plot disease status compared to 2013 model results. For comparison 288 

we used modeled diseased status and most recent plot diseased status (not all plots are sampled 289 

every year so this comparison will tend to underestimate plot disease status). For simplicity and 290 

realistic comparisons, we treated both infected and uninfected model results as uninfected since 291 

infected non-symptomatic areas would be recorded as uninfected in the field due to no visible 292 

symptoms. 293 

 294 

Table 1: Accuracy assessment of the model results at a landscape level comparing plot 295 

observations to model observations for the year the observations occurred (e.g. plots sampled in 296 

2007 were compared to model results in 2007). The true positive rate is 73.1% and the true negative 297 

rate is 58.3% and total accuracy is 68.9%. Values are aggregates of all years considered in the 298 

model.  299 

     Observed 

     Positive Negative 

M
o
d
el

ed
 

 
Positive 225 50 

 
Negative 83 70 

     73.1% 58.3% 

 300 

 We performed a sensitivity analysis of the model’s transmission rate (𝛽0) and the 𝛼 301 

coefficient in the dispersal kernel. We choose to focus on both 𝛽0 and the 𝛼 coefficient as they are 302 

the parameters that will allow the user most flexibility when calibrating the model and they will 303 

have substantial impact on spread. For this analysis we focused on model accuracy as measured 304 

by the odds ratio. We ran 3 simulations of each model with a different random seed in order to 305 

account for stochasticity between model runs.  𝛽0 varied from 4.00 to 5.00 in 0.25 increments and 306 

𝛼 varied from 2.4 to 2.6 in 0.1 increments for a total for 15 different combinations of 𝛽0 and 𝛼 and 307 
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total number of model simulations of 45. On average decreasing 𝛽0 by 0.25 resulted in a 7.01% 308 

decrease in the odds ratio (a measure of accuracy) while holding 𝛼 constant. On average a 0.1 309 

decrease in 𝛼 resulted in a 15.2% increase in the odds ratio while holding 𝛽0 constant. 310 

More broadly, the Base EDA extension could be a suitable landscape modeling tool for a range 311 

of EDA agents. Across the globe, an increasing number of destructive pathogens have emerged 312 

as disturbance agents shaping forest structure and function at landscape scales. These events 313 

have substantial ecological and economic impacts, the understanding of which are important to 314 

designing management responses (Liebhold et al. 1995, Simberloff 2000, Vitousek et al. 1997). 315 

The default Base EDA data and parameterization is most suitable for aerially dispersed 316 

pathogens and those where a biologically-driven infectious period is not a significant factor. 317 

These conditions are met for the most destructive forest diseases in North America including 318 

chestnut blight, sudden oak death, and possibly Beech Bark Disease although the latter system 319 

involves an insect that may complicate the process of infection and spread. In practice, we 320 

emphasize the importance of parameterizing the dispersal kernel for application to a new system. 321 

Proper understanding of dispersal dynamics is critical to accurate forecasting of spread and 322 

disease dynamics (Meentemeyer et al. 2011; Filipe et al. 2012; Metz et al. 2017). Acquiring 323 

empirical measurements of dispersal at scales more than a few meters is challenging but we 324 

emphasize it is incumbent on users to overcome this difficulty in order to properly apply the 325 

model. Examples of confronting this problem for P. ramorum can be found in Meentemeyer et 326 

al. 2011 and Filipe et al. 2012. These examples integrated several datasets to estimate and 327 

validate dispersal parameters including spore trapping, molecular data, landscape-extent 328 

monitoring plot networks, and aerial tree mortality mapping from fixed-wing aircraft. We 329 

encourage further experimentation with alternative formulations of dispersal kernels and 330 
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environmental (weather) dependencies as these could render the extension suitable for a greater 331 

range of epidemiological disturbance agents such as pathogens spread via insect vectors, 332 

movement of contaminated soil or plant material, and spread in waterways. 333 

 334 

Acknowledgments 335 

The authors would like to thank the anonymous reviewers for their valuable comments and 336 

suggestions to improve the quality of the paper. The authors thank all members of the 337 

Meentemeyer Landscape Dynamics Lab at the Center for Geospatial Analytics, Rob Scheller and 338 

Eric Gustafson for their feedback and valuable suggestions on the present work. This research 339 

was supported by the National Science Foundation [grant numbers DEB-EF-0622677 and EF-340 

0622770] as part of the joint NSF-NIH Ecology of Infectious Disease program. The authors also 341 

gratefully acknowledge financial support from the USDA Forest Service e Pacific Southwest 342 

Research Station, the USDA Forest Service e Forest Health Protection, State and Private 343 

Forestry, and the Gordon & Betty Moore Foundation. All authors made substantial contributions 344 

to this work in the following areas: As first author, F.T. led and coordinated the study presented 345 

herein, alongside with code development for the epidemiological model. C.J. and B.M. equally 346 

contributed to project development and methods. C.J. helped with extensive editing, structuring, 347 

writing, and code development needed to parallelize the EDA extension; B.M. contributed code 348 

development with extensive efforts on the weather component of the EDA extension, alongside 349 

editing the manuscript. R.C. provided expertise on epidemiological processes and contributed to 350 

editing the manuscript; B.S. edited the manuscript and provided expertise on LANDIS-II and 351 

other ecological disturbances; and R.M. conceived the project and edited the manuscript. B.S. 352 

and B.M. are supported by the National Fire Plan of the US Forest Service. We would like to 353 



19 
 

thank N. Lichti for the use of his code for the dispersal component of the epidemiological 354 

process. 355 

 356 

References 357 

 358 

Anderson, P. K. et al. 2004. Emerging infectious diseases of plants: pathogen pollution, climate 359 

change and agrotechnology drivers. - Trends Ecol. Evol. 19: 535-544. 360 

https://doi.org/10.1016/j.tree.2004.07.021. 361 

Beh, M. M. et al. 2012. The key host for an invasive forest pathogen also facilitates the 362 

pathogen’s survival of wildfire in California forests. - New Phytol. 196: 1145–1154. 363 

Cobb, R. C. et al. 2010. Apparent competition in canopy trees determined by pathogen 364 

transmission rather than susceptibility.- Ecol 91: 327e333. 365 

Cobb, R. C. and Metz, M. R. 2017. Tree Diseases as a cause and consequence of interacting 366 

forest disturbances. - Forests 8: 147. http://www.mdpi.com/1999-4907/8/5/147. 367 

Dale, V. H. et al. 2009. Climate change and forest disturbances. - BioScience 51: 723–734. 368 

https://doi.org/10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2 369 

Dwyer, G. et al. 2004. The combined effects of pathogens and predators on insect outbreaks. - 370 

Nature 430: 341-345. doi:10.1038/nature02569. 371 

Filipe, J. A. N. et al. 2012. Landscape epidemiology and control of pathogens with cryptic and 372 

long-distance dispersal: sudden oak death in northern Californian forests. - PLoS Comp. 373 

Biol. 8: e1002328. 374 



20 
 

Gaydos, D. A. et al. 2017. Resilience of diversity-disease risk interactions following wildfire 375 

disturbance. - In: Frankel, S. J. and Harrell, K. M. (ed.), Proceedings of the sudden oak 376 

death sixth science symposium. Gen. Tech. Rep. GTR-PSW-255, pp. 7. 377 

Jactel, H. et al. 2012. Drought effects on damage by forest insects and pathogens: A meta-378 

analysis. - Glob. Change Biol. 18: 267–276. https://doi.org/10.1111/j.1365-379 

2486.2011.02512.x 380 

Lichti, N. I. et al. (in prep).  Linking landscapes and demography: accounting for propagule 381 

pressure in a forest simulation model. 382 

Liebhold, A. M. et al. 1995. Invasion by exotic forest pests: A threat to forest ecosystems. - 383 

Forest Sci., Monograph. 30: a0001–z0001(1). 384 

Meentemeyer, R. K. et al. 2008. Impact of sudden oak death on tree mortality in the Big Sur 385 

ecoregion of California. - Biol. Inv. 10: 1243–1255. https://doi.org/10.1007/s10530-007-386 

9199-5 387 

Meentemeyer, R. K. et al. 2011. Epidemiological modeling of invasion in heterogeneous 388 

landscapes: spread of sudden oak death in California (1990–2030). - Ecosphere. 2: 1-24. 389 

Metz, M. et al. 2017. Lessons from 15 years of monitoring sudden oak death and forest dynamics 390 

in California forests. - In: Frankel, S. J. and Harrell, K. M. (ed.), Proceedings of the sudden 391 

oak death sixth science symposium, Gen. Tech. Rep. GTR-PSW-255, pp. 2-3 392 

Mladenoff, D. J., 2004. LANDIS and forest landscape models. - Ecol. Model., 180: 7–19. 393 

https://doi.org/10.1016/j.ecolmodel.2004.03.016 394 

Mladenoff, D. J. 2005. The promise of landscape modeling: successes, failures, and evolution. - 395 

Issues and Perspectives in Landscape Ecol. 90–100. 396 

https://doi.org/10.1017/CBO9780511614415.011 397 



21 
 

Scheller, R. M. and Mladenoff, D. J. 2007. An ecological classification of forest landscape 398 

simulation models: tools and strategies for understanding broad-scale forested ecosystems. - 399 

Landscape Ecol. 22: 491–505. https://doi.org/10.1007/s10980-006-9048-4 400 

Scheller, R. M. et al. 2007. Design, development, and application of LANDIS-II, a spatial 401 

landscape simulation model with flexible temporal and spatial resolution. - Ecol. Model. 402 

201: 409–419. https://doi.org/10.1016/j.ecolmodel.2006.10.009 403 

Scheller, R. M. et al. 2011. The effects of forest harvest intensity in combination with wind 404 

disturbance on carbon dynamics in a Lake States mesic landscape. - Ecol. Model. 222: 144-405 

153. 406 

Simberloff, D. 2000. Global climate change and introduced species in United States forests. - 407 

Sci. Total Environ. 262: 253–261. 408 

https://doi.org/https://doi.org/https://doi.org/10.1016/S0048-9697(00)00527-1 409 

Sturtevant, B. R. et al. 2004. Modeling biological disturbances in LANDIS: a module description 410 

and demonstration using spruce budworm. - Ecol. Model. 180: 153–174. 411 

Thompson, J. R. et al. 2016. A LANDIS-II extension for incorporating land use and other 412 

disturbances. - Environ. Model. Softw. 75: 202–205. 413 

https://doi.org/10.1016/j.envsoft.2015.10.021 414 

Vitousek, P. M. et al. 1997. Human alteration of the global nitrogen cycle: Sources and 415 

consequences. - Ecol. Appl. 7: 737–750. https://doi.org/https://doi.org/10.1890/1051-416 

0761(1997)007[0737:HAOTGN]2.0.CO;2 417 

Welsh, C. et al. 2009. The outbreak history of Dothistroma needle blight: an emerging forest 418 

disease in northwestern British Columbia, Canada. - Can. J. Forest Res. 39: 2505–2519. 419 

https://doi.org/10.1139/X09-159 420 



22 
 

 421 

 422 


